Sparse roadmap spanners for asymptotically near-optimal motion planning
نویسندگان
چکیده
Asymptotically optimal planners, such as PRM∗, guarantee that solutions approach optimal as the number of iterations increases. Roadmaps with this property, however, may grow too large for storing on resource-constrained robots and for achieving efficient online query resolution. By relaxing optimality, asymptotically near-optimal planners produce sparser graphs by not including all edges. The idea stems from graph spanners, which produce sparse subgraphs that guarantee near-optimality. Existing asymptotically optimal and near-optimal planners, however, include all sampled configurations as roadmap nodes, meaning only infinite-size graphs have the desired properties. To address this limitation, this work describes SPARS, an algorithm that returns a sparse roadmap spanner. The method provides the following properties: (a) probabilistic completeness, (b) asymptotic near-optimality and (c) the probability of adding nodes to the spanner converges to zero as iterations increase. The last point suggests that finite-size data structures with asymptotic near-optimality in continuous spaces may indeed exist. The approach builds simultaneously a dense graph similar to PRM∗ and its roadmap spanner, meaning that upon construction an infinite-size graph is still needed asymptotically. An extension of SPARS is also presented, termed SPARS2, which removes the dependency on building a dense graph for constructing the sparse roadmap spanner and for which it is shown that the same desirable properties hold. Simulations for rigid body motion planning show that algorithms for constructing sparse roadmap spanners indeed provide small data structures and result in faster query resolution. The rate of node addition is shown to decrease over time and practically the quality of solutions is considerably better than the theoretical bounds. Upon construction, the memory requirements of SPARS2 are significantly smaller but there is a small sacrifice in the size of the final spanner relative to SPARS.
منابع مشابه
Asymptotically Near-Optimal Is Good Enough for Motion Planning
Asymptotically optimal motion planners guarantee that solutions approach optimal as more iterations are performed. There is a recently proposed roadmap-based method that provides this desirable property, the PRM∗ approach, which minimizes the computational cost of generating the roadmap. Even for this method, however, the roadmap can be slow to construct and quickly grows too large for storage ...
متن کاملSparse Roadmap Spanners
Asymptotically optimal planners, such as PRM⇤, guarantee that solutions approach optimal as iterations increase. Roadmaps with this property, however, may grow too large. If optimality is relaxed, asymptotically near-optimal solutions produce sparser graphs by not including all edges. The idea stems from graph spanner algorithms, which produce sparse subgraphs that guarantee near-optimal paths....
متن کاملImproved Heuristic Search for Sparse Motion Planning Data Structures
Sampling-based methods provide efficient, flexible solutions for motion planning, even for complex, highdimensional systems. Asymptotically optimal planners ensure convergence to the optimal solution, but produce dense structures. This work shows how to extend sparse methods achieving asymptotic near-optimality using multiple-goal heuristic search during graph constuction. The resulting method ...
متن کاملSampling-based Roadmap Planners are Probably Near-Optimal after Finite Computation
Sampling-based motion planners have proven to be efficient solutions to a variety of high-dimensional, geometrically complex motion planning problems with applications in several domains. The traditional view of these approaches is that they solve challenges efficiently by giving up formal guarantees and instead attain asymptotic properties in terms of completeness and optimality. Recent work h...
متن کاملAsymptotically optimal sampling-based kinodynamic planning
Sampling-based algorithms are viewed as practical solutions for high-dimensional motion planning. Recent progress has taken advantage of random geometric graph theory to show how asymptotic optimality can also be achieved with these methods. Achieving this desirable property for systems with dynamics requires solving a two-point boundary value problem (BVP) in the state space of the underlying ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 33 شماره
صفحات -
تاریخ انتشار 2014